Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through

نویسندگان

  • Yun Wang
  • Qiuwei Wu
  • Honghua Xu
  • Qinglai Guo
  • Hongbin Sun
چکیده

This paper presents a fast coordinated control scheme of the rotor side converter (RSC), the Direct Current (DC) chopper and the grid side converter (GSC) of doubly fed induction generator (DFIG) wind turbine generators (WTGs) to improve the low voltage ride through (LVRT) and high voltage ride through (HVRT) capability of the DFIG WTGs. The characteristics of DFIG WTGs under voltage sags and swells were studied focusing on the DFIG WTG stator flux and rotor voltages during the transient periods of grid voltage changes. The protection schemes of the rotor crowbar circuit and the DC chopper circuit were proposed considering the characteristics of the DFIG WTGs during voltage changes. The fast coordinated control of RSC and GSC were developed based on the characteristic analysis in order to realize efficient LVRT and HVRT of the DFIG WTGs. The proposed fast coordinated control schemes were verified by time domain simulations using Matlab-Simulink. OPEN ACCESS Energies 2014, 7 4141

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient low-voltage ride-through nonlinear backstepping control strategy for PMSG-based wind turbine during the grid faults

This paper presents a new nonlinear backstepping controller for a direct-driven permanent magnet synchronous generator-based wind turbine, which is connected to the power system via back-to-back converters. The proposed controller deals with maximum power point tracking (MPPT) in normal condition and enhances the low-voltage ride-through (LVRT) capability in fault conditions. In this method, to...

متن کامل

Analysis, Modeling and Control of Doubly-Fed Induction Generators for Wind Turbines

This thesis deals with the analysis, modeling, and control of the doubly-fed induction generator (DFIG) for wind turbines. Different rotor current control methods are investigated with the objective of eliminating the influence of the back electromotive force (EMF), which is that of, in control terminology, a load disturbance, on the rotor current. It is found that the method that utilizes both...

متن کامل

Low Voltage Ride-Through Capability Improvement of Doubly Fed Induction Generator using DVR and SMES

Abstract: With the growth of communities and the increasing need for electricity, and because of the many benefits of renewable energy sources, the wind turbine has become a completely commercial and inevitable process, with increasing penetration into the electricity grid. Distribution networks, on the other hand, are subject to fault that cause power fluctuations and outflow of wind units. In...

متن کامل

Unbalanced-Grid-Fault Ride-Through Control for a Doubly Fed Induction Generator Wind Turbine with Series Grid-Side Converter

The grid codes now require doubly fed induction generator (DFIG) wind turbines having the “low voltage ride-through (LVRT)” capability. However, a traditional DFIG with a partially rated back-to-back converter has inherent difficulties to ride through the grid faults, especially for the unbalanced grid faults. Modifications to the traditional DFIG configuration for ride-through have become nece...

متن کامل

A Combined Vector and Direct Power Control for AC/DC/AC Converters in DFIG Based Wind Turbine

The doubly-fed generators (DFIG) have clear superiority for the applications of large capacity and limited-range speed control case due to the partially rated inverter, lower cost and high reliability. These characteristics enable the doubly-fed wound rotor induction machine to have vast applications in wind-driven generation.In this paper Combined Vector and direct power control (CVDPC) strate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014